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LETTER TO THE EDITOR 

Ground state of X Y  models of interacting spins in a 
transverse field 

Ferenc P&"ndi and Zbigniew Domanski 
Institute of Theoretical Physich University of Lausanne, CH-1015 Lausanne. Switzerland 

Received 17 May 1993 

Abstract. We investigate the ground state of an XY model with a transverse field, characterized 
by an exchange matrix, whose highest eigenvalue, A.,,, is supposed to be positive and finite. 
We prove rigorously that for a spin S the ground state changes at the m s v e a e  field value 
K, =SA&. 

Our model is defined by the Hamiltonian 

where $, 5: and $ are the S-spin operators at the site i, N is the number of spins and 
K is assumed to be positive (for a general review of X Y  model see [I]). The ,sround- 
state properties of the Hamiltonian (1) have attracted some interest, especially for K = 0, 
where the existence o f  long-range order on hypercubic [2,3] and triangular [4] lattices was 
investigated. The effect of the transverse field was examined in [5] for a nearest-neighbour 
ferromagnetic interaction. 

In this paper we will use only two properties of the interaction: 

(i) The highest eigenvalue, A,,, of the matrix Jcj  is between zero and infinity 

0 < A,, < 00 

(ii) Jij is symmetric and J,i = 0, Vi:.. 

(2) 

With these assumptions OUT results are more general than those of [5], and can be applied 
for example, to random inferactions. 

Introducing the ,?* = Sx f ,?Y operators we rewrite the Hamiltonian (1) in the form 

where h?l = xi $ denotes the total magnetization in the'z direction. Let us~denote by lM) 
an eigenstate of h?l with the eigenvalue M. Since fi and h?l commute, all eigenstates of fi 
are characterized by a fixed magnetization M in the z direction. If M = N S ,  then INS) is 
the state where all spins are aligned in the z direction; if M < N S ,  IM) denotes an arbitrary 
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element of the subspace where the magnetization in the z direction is M. First we prove 
that the state INS)  is the ground state for K > Kc = SAmm. Subsequently, we will show 
that for K < Kc the ground state is a state with M -= NS.  

The energy EM of a state IM) with magnetization M is 

After diagonalizing the second term in equation (4), we have 

where Ipk) = E, Okj!;i+lM) and 0 is the unitary matrix which diagonalizes Ji j .  Since 
(pklpw) is a non-negatlve number, we can estimate E M  as 

where 

X i 

From equation (7) it follows that p is zero if M = N S .  If A,, 6 0, the right-hand side 
(RHS) of equation (6) is minimal when M = N S  (M maximal, p minimal). On the other 
hand, this minimal value, Eo = - K N S ,  is exactly the energy of the state INS) ,  as one can 
see from equation (4). This means that in the case A,, 6 0, the ground state is always 

there is interplay between M and p in 
equation (6). Using the identity ?-?+ = (S- Sz)(S+ 1 +>), where Si can take the valuer 
(S, S - 1, . . . , -S), we estimate p as 

INS). 
The case A,, z 0 is more interesting 

p G E(MI(S - $jisIM) = Z S ( N S  - M). ~~ (8: 
i 

Finally, from equations (6) q d  (8) we get an inequality 

E M  > -NS2A,, -,(K - SX,,)M (9) 

which gives a lower bound for E M .  
If K > K,  = SA,,, the RHS of equation (9) is minimal for M = N S ,  giving a lower 

bound EO = - K N S  for the energy EM for any M .  As we have seen, the state INS) has 
the same energy as this lower bound, EO = ENS,  so we have proved that the ground state 
is INS)  in this case. From equation (9) we can also estimate the gap between the ground 
and first excited states to be at least K - K, (see equation (9) for M = N S  - 1). 

In the second part of the proof, we show that for K e K,  one can construct a state 19) 
with magnetization M = N S  - 1, whose energy, E y ,  is smaller than EO as follows: 
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where xi [c;lz = 1, and the set ci is a solution of the equations 

J ~ ~ c ~  = imwci  i = I , .  . . , N .  (11) 

(For the nearest-neighbour ferromagnetic model, Iq) is a one-magnon excitation with IC = 0.) 
With the help of the relation i ? $ ] N S )  = ZSSijlNS),  one can easily check that [q) is an 
eigenstate of A (equation (3)): 

j 

fi[q) = ( - K N S  + K - SA,,)lrp). (12) 

Comparing equations (12) and (9) for M = N S  - 1, we can see that 19) is a state for 
which the expression (9) holds as an equality. This means that for K > K, = SA,, the 
state [q) is an excitation with the smallest possible energy gap, K - K,; for K < K,, the 
energy of 19) is smaller than Eo,.so,lNS) cannot be the ground state. This way we have 
proved that the ground state changes at Kc; for K e Kc the ground state is determined by 
the details of the interaction matrix. 

The value of A,, depends on the structure and on the size of Ji j .  However, for large 
enough N and for short-range interactions we expect A,, to be independent of N and 
determined by the lattice structure. Figure 1 shows two such examples, (For classical spin 
systems Canning [6] pointed out the important role of the eigensystem of Jij.) 

~~ 

Figure 1. (a) Example of a non-frustrated lattice. Thick and thin lines denare antiferromagnetic 
and ferromagnetic interactions. respectively. The sires are marked by the values of 6, (see text). 
(b)  Fruslrated triangular lanice. All interactions nre antiferromagnetic. There is no pattern of 
[e;] which would produce only antiferromagnetic interactions. 

The first lattice (figure I@)) is a non-frustrated one with the interaction 

(13) J . .  - c<. 
8 ,  - t ,Lcj Lij > ~ O  ti = *l 

where Lij is LI  for nearest neighbours, L2 for next-nearest neighbours and zero otherwise. 
In figure ] (a)  we have chosen a chess board-like [&] pattern giving antiferromagnetic 
nearest-neighbour and ferromagnetic next-nearest-neighbour interactions, not actually A,, 
is independent of the choice of {&I. For this lattice zm = ziLl +zzL2, where zI = zz = 4. 
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The second example is the antiferromagnetic triangular lattice with an interaction -J 
(figure l(b)), where the maximal eigenvalue, A,, = 25, is much smaller than it would be 
for ferromagnetic interactions (61 51). because of the frustration. 

For S = 4 the Hamiltonian (3) is equivalent to that of the hard-core Bose gas, via the 
lattice-gas analogy of Matsubara and Matsuda [7], where K plays the role of the chemical 
potential, so our result holds equally well for this model. 
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acknowledged. We thank P Erdos, A Suto and P Santini for fruitful discussions. 
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