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LETTER TO THE EDITOR

Ground state of X'V models of interacting spins in a
transverse field

Ferenc Pézmandi and Zbigniew Domanski
Institute of Theoretical Physics, University of Lavusanne, CH-1015 Laosanne, Switzetland

Received 17 May 1993

Abstract. We investigate the ground state of an XY model with a transverse field, characterized
by an exchange matrix, whose highest eigenvalue, Apgy, is supposed to be positive and finite.
We prove rigorously that for a spin § the ground state changes at the transverse field value
Ke = Shmix.

Our model is defined by the Harmiltonian

N ) . N .
A=—33" 058 +88H -k § (1)
ij i

v

where S'f , .§'ty and .§f are the S-spin operators at the site i, N is the number of spins and
K is assumed to be positive (for a general review of XY model see {I]). The ground-
state properties of the Hamiltonian (1) have attracted some interest, especially for X =0,
where the existence of long-range order or hypercubic [2,3] and triangular [4] lattices was
investigated. The effect of the transverse field was exammed in 3] for a nearest-neighbour
ferromagnetic interaction.

In this paper we will use only two properties of the interaction:

(i) The highest eigenvalue, Ap.y, of the matrix J;; is between zero and infinity
0 < dpax <00 (2)

(i)} Ji; is symmetric and J;; =0, V.

With these assumptions our results are more general than those of [5], and can be applied
for example, to random interactions.
Introducing the SE=5r 1§ operators we rewrite the Hamiltonian (1) in the form

N - ~ -
A=-3> J85F8 ~ kM 3)

where M = > .§'f denotes the total magnetization in the z direction. Let us denote by [ M)

_ an eigenstate of M with the eigenvalue M. Since A and M commute, all eigenstates of H
are characterized by a fixed magnetization M in the z direction. If M = NS, then [N S} is
the state where all spins are aligned in the z direction; if M < N 8, |M) denotes an arbitrary
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element of the subspace where the magnetization in the z direction is M. First we prove
that the state |JNS) is the ground state for K > K¢ = SApax. Subsequently, we will show
that for K < K, the ground state is a state with M < N§.

The energy £y of a state |M) with magnetization M is

Ey = (M{BIM) = —KM — ;Y (M5 7,5 ). )
Li

After diagonalizing the second term in equation (4), we have
N
Ep=—KM -1 ilodon) 5)
3

where |og) = X O "'IM and © is the unitary matrix which diagonalizes J;;. Since
(or|pe} is @ non- neoauve number, we can estimate Ejr as

—KM = $maxp (©

where
N
p=D oelon) = D (M55 SHIM) > 7
k 14

From equation (7) it follows that p is zero if M = NS. If A < 0, the right-hand side
(RHS) of equation (6) is minimal when M = NS (M maximal, p minimal}. On the other
hand, this minimal value, Ey = —K N §, is exactly the energy of the state | NS}, as one can
see from equation {4). This means that in the case hpy € 0, the ground state is always
|NS).

The case Agge > O is more mterestmg as there is 1nterplay between M and p in
equation (6). Using the identity 8= {(S—- S"')(S +1 +SZ), where §% can take the values
(5,5—1,...,—5), we estimate p as

p< Y (MI(S — §9)25|M) = 2S(NS — M). ®

i
Finally, from equations (6) and (8) we get an inequality
2 ~NS"hmax = (K ~ Shauax) M )

which gives a lower bound for Ejy.

If K > K; = Sk, the RES of equation (3) is minimal for M = NS, giving a lower
bound £y = —K NS for the energy Epy for any M. As we have seen, the state |N S} has
the same energy as this lower bound, Eg = Eng, 50 we have proved that the ground state
is [N S) in this case. From equation (9) we can also estimate the gap between the ground
and first excited states to be at least K — K, (see equation (D for M = NS — 1),

In the second part of the proof, we show that for £ < K, one can construct a state |¢)
with magnetization M = N5 — 1, whose energy, E,, is smaller than Ej as follows:

N

=) %S}‘WS) (10)
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where ¥, [¢;|* = 1, and the set ¢; is a solution of the equations

S Gy =hmwer  i=l..N. an
i

(For the nearest-neighbour ferromagnetic model, |¢) is a one-magnon excitation with k& = 0.)
With the help of the relation 5;* 57 |NS) = 258,;|N S}, one can easily check that [} is an

eigenstate of A {equation (3)):
Hlp) = (—KNS + K — Shaul). (12)

Comparing equations (12) and (9) for M = NS — 1, we can see that [p)} is a state for
which the expression (9) holds as an equality. This means that for K > K, = SAp the
state |} is an excitation with the smallest possible energy gap, K — K;; for K < K, the
energy of {g) is smaller than Ep, so [N S8) cannot be the ground state. This way we have
proved that the ground state changes at K,; for K < K the ground state is determined by
the details of the interaction matrix. o

The value of Amyy depends on the structure and on the size of J;;. However, for large
enough N and for short-range interactions we expect Apa to be independent of & and
determined by the lattice structure. Figure 1 shows two such examples, (For classical spin
systems Canning [6) pointed out the important role of the eigensystem of Ji;.)

%

TAVAN

(a) (6)

Figure 1. {a) Example of a non-frustrated Iattice. Thick and thin lines denote antiferromagnetic
and ferromagnetic interactions, respectively. The sites are marked by the values of &, (see text).
(b) Frustrated triangular lattice. All interactions are antiferromagnetic. There is no pattern of
'f£;} which would produce only antiferromagnetic interactions.

The first lattice (figure 1{a)) is a non-frustrated one with the interaction
Jij = && Ly Li;=0 & ==l (13)

where L;; is L for nearest neighbours, L, for next-nearest neighbours and zero otherwise.
In figure 1(a¢) we have chosen a chess board-like (£} pattern giving antiferromagnetic
nearest-neighbour and ferromagnetic next-nearest-neighbour interactions, not actually Apa,
is independent of the choice of {§,}. For this lattice 70 = 7Ly +23L9, where z) = z0 = 4.
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The second example is the antiferromagnetic triangular lattice with an interaction —J

(figure 1(b)), where the maximal eigenvalue, Anyx = 2J, is much smaller than it would be
for ferromagnetic interactions (6{J ), because of the frustration.

For § = -% the Hamiltonian (3) is equivalent to that of the hard-core Bose gas, via the

lattice~-gas analogy of Matsubara and Matsuda [7], where K plays the role of the chemical
potential, so our result holds equally well for this model.
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