

Home Search Collections Journals About Contact us My IOPscience

Ground state of XY models of interacting spins in a transverse field

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1993 J. Phys. A: Math. Gen. 26 L689 (http://iopscience.iop.org/0305-4470/26/15/013)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.62 The article was downloaded on 01/06/2010 at 19:02

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Ground state of XY models of interacting spins in a transverse field

Ferenc Pázmándi and Zbigniew Domanski

Institute of Theoretical Physics, University of Lausanne, CH-1015 Lausanne, Switzerland

Received 17 May 1993

Abstract. We investigate the ground state of an XY model with a transverse field, characterized by an exchange matrix, whose highest eigenvalue, λ_{max} , is supposed to be positive and finite. We prove rigorously that for a spin S the ground state changes at the transverse field value $K_c = S\lambda_{max}$.

Our model is defined by the Hamiltonian

$$\hat{H} = -\frac{1}{2} \sum_{i,j}^{N} J_{ij} (\hat{S}_i^x \hat{S}_j^x + \hat{S}_i^y \hat{S}_j^y) - K \sum_{i}^{N} \hat{S}_i^z$$
(1)

where \hat{S}_i^x , \hat{S}_i^y and \hat{S}_i^z are the S-spin operators at the site *i*, *N* is the number of spins and *K* is assumed to be positive (for a general review of *XY* model see [1]). The ground-state properties of the Hamiltonian (1) have attracted some interest, especially for K = 0, where the existence of long-range order on hypercubic [2, 3] and triangular [4] lattices was investigated. The effect of the transverse field was examined in [5] for a nearest-neighbour ferromagnetic interaction.

In this paper we will use only two properties of the interaction:

(i) The highest eigenvalue, λ_{max} , of the matrix J_{ij} is between zero and infinity

$$0 < \lambda_{\max} < \infty$$
 (2)

(ii) J_{ii} is symmetric and $J_{ii} = 0, \forall_i$.

With these assumptions our results are more general than those of [5], and can be applied for example, to random interactions.

Introducing the $\hat{S}^{\pm} = \hat{S}^{x} \pm \hat{S}^{y}$ operators we rewrite the Hamiltonian (1) in the form

$$\hat{H} = -\frac{1}{2} \sum_{i,j}^{N} J_{ij} \hat{S}_{i}^{+} \hat{S}_{j}^{-} - K \hat{M}$$
(3)

where $\hat{M} = \sum_i \hat{S}_i^z$ denotes the total magnetization in the z direction. Let us denote by $|M\rangle$ an eigenstate of \hat{M} with the eigenvalue M. Since \hat{H} and \hat{M} commute, all eigenstates of \hat{H} are characterized by a fixed magnetization M in the z direction. If M = NS, then $|NS\rangle$ is the state where all spins are aligned in the z direction; if M < NS, $|M\rangle$ denotes an arbitrary

element of the subspace where the magnetization in the z direction is M. First we prove that the state $|NS\rangle$ is the ground state for $K > K_c = S\lambda_{max}$. Subsequently, we will show that for $K < K_c$ the ground state is a state with M < NS.

The energy E_M of a state $|M\rangle$ with magnetization M is

$$E_M = \langle M | \hat{H} | M \rangle = -KM - \frac{1}{2} \sum_{i,j} \langle M | \hat{S}_i^- J_{ij} \hat{S}_j^+ | M \rangle.$$
(4)

After diagonalizing the second term in equation (4), we have

$$E_M = -KM - \frac{1}{2} \sum_{k}^{N} \lambda_k \langle \rho_k | \rho_k \rangle$$
(5)

where $|\rho_k\rangle = \sum_j \Theta_{kj} \hat{S}_j^+ |M\rangle$ and Θ is the unitary matrix which diagonalizes J_{ij} . Since $\langle \rho_k | \rho_k \rangle$ is a non-negative number, we can estimate E_M as

$$E_M \geqslant -KM - \frac{1}{2}\lambda_{\max}\rho \tag{6}$$

where

$$\rho = \sum_{k}^{N} \langle \rho_k | \rho_k \rangle = \sum_{i} \langle M | \hat{S}_i^- \hat{S}_i^+ \hat{S}_i^+ | M \rangle \ge 0.$$
⁽⁷⁾

From equation (7) it follows that ρ is zero if M = NS. If $\lambda_{\max} \leq 0$, the right-hand side (RHS) of equation (6) is minimal when M = NS (M maximal, ρ minimal). On the other hand, this minimal value, $E_0 = -KNS$, is exactly the energy of the state $|NS\rangle$, as one can see from equation (4). This means that in the case $\lambda_{\max} \leq 0$, the ground state is always $|NS\rangle$.

The case $\lambda_{\text{max}} > 0$ is more interesting as there is interplay between M and ρ in equation (6). Using the identity $\hat{S}^-\hat{S}^+ = (S - \hat{S}^z)(S + 1 + \hat{S}^z)$, where \hat{S}^z can take the values $(S, S - 1, \dots, -S)$, we estimate ρ as

$$\rho \leq \sum_{i} \langle M | (S - \hat{S}_{i}^{z}) 2S | M \rangle = 2S(NS - M).$$
(8)

Finally, from equations (6) and (8) we get an inequality

$$E_M \ge -NS^2 \lambda_{\max} - (K - S\lambda_{\max})M \tag{9}$$

which gives a lower bound for E_M .

If $K > K_c = S\lambda_{max}$, the RHS of equation (9) is minimal for M = NS, giving a lower bound $E_0 = -KNS$ for the energy E_M for any M. As we have seen, the state $|NS\rangle$ has the same energy as this lower bound, $E_0 = E_{NS}$, so we have proved that the ground state is $|NS\rangle$ in this case. From equation (9) we can also estimate the gap between the ground and first excited states to be at least $K - K_c$ (see equation (9) for M = NS - 1).

In the second part of the proof, we show that for $K < K_c$ one can construct a state $|\varphi\rangle$ with magnetization M = NS - 1, whose energy, E_{φ} , is smaller than E_0 as follows:

$$|\varphi\rangle = \sum_{i}^{N} \frac{c_{i}}{\sqrt{2S}} \hat{S}_{i}^{-} |NS\rangle \tag{10}$$

where $\sum_{i} |c_i|^2 = 1$, and the set c_i is a solution of the equations

$$\sum_{j} J_{ij} c_j = \lambda_{\max} c_i \qquad i = 1, \dots, N.$$
(11)

(For the nearest-neighbour ferromagnetic model, $|\varphi\rangle$ is a one-magnon excitation with k = 0.) With the help of the relation $\hat{S}_i^+ \hat{S}_j^- |NS\rangle = 2S\delta_{ij}|NS\rangle$, one can easily check that $|\varphi\rangle$ is an eigenstate of \hat{H} (equation (3)):

$$\hat{H}|\varphi\rangle = (-KNS + K - S\lambda_{\max})|\varphi\rangle.$$
⁽¹²⁾

Comparing equations (12) and (9) for M = NS - 1, we can see that $|\varphi\rangle$ is a state for which the expression (9) holds as an equality. This means that for $K > K_c = S\lambda_{max}$ the state $|\varphi\rangle$ is an excitation with the smallest possible energy gap, $K - K_c$; for $K < K_c$, the energy of $|\varphi\rangle$ is smaller than E_0 , so $|NS\rangle$ cannot be the ground state. This way we have proved that the ground state changes at K_c ; for $K < K_c$ the ground state is determined by the details of the interaction matrix.

The value of λ_{\max} depends on the structure and on the size of J_{ij} . However, for large enough N and for short-range interactions we expect λ_{\max} to be independent of N and determined by the lattice structure. Figure 1 shows two such examples, (For classical spin systems Canning [6] pointed out the important role of the eigensystem of J_{ij} .)

Figure 1. (a) Example of a non-frustrated lattice. Thick and thin lines denote antiferromagnetic and ferromagnetic interactions, respectively. The sites are marked by the values of ξ_i (see text). (b) Frustrated triangular lattice. All interactions are antiferromagnetic. There is no pattern of $\{\xi_i\}$ which would produce only antiferromagnetic interactions.

The first lattice (figure 1(a)) is a non-frustrated one with the interaction

$$J_{ij} = \xi_i \xi_j L_{ij} \qquad L_{ij} \ge 0 \qquad \xi_i = \pm 1 \tag{13}$$

where L_{ij} is L_1 for nearest neighbours, L_2 for next-nearest neighbours and zero otherwise. In figure 1(*a*) we have chosen a chess board-like $\{\xi_i\}$ pattern giving antiferromagnetic nearest-neighbour and ferromagnetic next-nearest-neighbour interactions, not actually λ_{\max} is independent of the choice of $\{\xi_i\}$. For this lattice $z_{\max} = z_i L_1 + z_2 L_2$, where $z_1 = z_2 = 4$. The second example is the antiferromagnetic triangular lattice with an interaction -J (figure 1(b)), where the maximal eigenvalue, $\lambda_{max} = 2J$, is much smaller than it would be for ferromagnetic interactions (6|J|), because of the frustration.

For $S = \frac{1}{2}$ the Hamiltonian (3) is equivalent to that of the hard-core Bose gas, via the lattice-gas analogy of Matsubara and Matsuda [7], where K plays the role of the chemical potential, so our result holds equally well for this model.

The support of the Swiss National Foundation through grant 20-28846.90 is gratefully acknowledged. We thank P Erdos, A Suto and P Santini for fruitful discussions.

References

- Betts D D 1974 Phase Transitions and Critical Phenomena vol III, ed C Domb and M S Green (London: Academic)
- [2] Kennedy T, Lieb E H and Shastry B S 1988 Phys. Rev. Lett. 61 2582
- [3] Kubo K and Kishi T 1988 Phys. Rev. Lett. 61 2585
- [4] Ivanov N B 1993 Phys. Rev. B 47 9105
- [5] Austen D J and Plischke M 1974 Phys. Lett. 48A 47
- [6] Canning A 1992 J. Phys. A: Math. Gen. 25 4723
- [7] Matsubara T and Matsuda H 1956 Prog. Theor. Phys. 16 569